Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(5): e8877, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35516417

RESUMO

Releasing gamebirds in large numbers for sport shooting may directly or indirectly influence the abundance, distribution and population dynamics of native wildlife. The abundances of generalist predators have been positively associated with the abundance of gamebirds. These relationships have implications for prey populations, with the potential for indirect impacts of gamebird releases on wider biodiversity. To understand the basis of these associations, we investigated variation in territory size, prey provisioning to chicks, and breeding success of common buzzards Buteo buteo, and associations with variation in the abundances of free-roaming gamebirds, primarily pheasants Phasianus colchicus, and of rabbits Oryctolagus cuniculus and field voles Microtus agrestis, as important prey for buzzards. The relative abundance of gamebirds, but not those of rabbits or voles, was weakly but positively correlated with our index of buzzard territory size. Gamebirds were rarely brought to the nest. Rabbits and voles, and not gamebirds, were provisioned to chicks in proportion to their relative abundance. The number of buzzard chicks increased with provisioning rates of rabbits, in terms of both provisioning frequency and biomass, but not with provisioning rates for gamebirds or voles. Associations between the abundances of buzzards and gamebirds may not be a consequence of the greater availability of gamebirds as prey during the buzzard breeding season. Instead, the association may arise either from habitat or predator management leading to higher densities of alternative prey (in this instance, rabbits), or from greater availability of gamebirds as prey or carrion during the autumn and winter shooting season. The interactions between gamebird releases and associated practices of predator control and shooting itself require better understanding to more effectively intervene in any one aspect of this complex social-ecological system.

2.
Curr Biol ; 32(4): 775-782.e4, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34910949

RESUMO

Exploitation of natural resources is a driver of human infectious disease emergence. The emergence of animal reservoirs of Guinea worm Dracunculus medinensis, particularly in domestic dogs Canis familiaris, has become the major impediment to global eradication of this human disease. 93% of all Guinea worms detected worldwide in 2020 were in dogs in Chad. Novel, non-classical pathways for transmission of Guinea worm in dogs, involving consumption of fish, have been hypothesized to support the maintenance of this animal reservoir. We quantified and analyzed variation in Guinea worm emergence in dogs in Chad, across three climatic seasons, in multiple villages and districts. We applied forensic stable isotope analyses to quantify dietary variation within and among dogs and GPS tracking to characterize their spatial ecology. At the end of the hot-dry season and beginning of the wet season, when fishing by people is most intensive, Guinea worm emergence rates in dogs were highest, dogs ate most fish, and fish consumption was most closely associated with disease. Consumption of fish by dogs enables a non-classical transmission pathway for Guinea worm in Chad. Seasonal fisheries and the facilitation of dogs eating fish are likely contributing to disease persistence and to this key impediment to human disease eradication. Interrelated natural resource use, climatic variation, companion animal ecology, and human health highlight the indispensability of One Health approaches to the challenges of eradicating Guinea worm and other zoonotic diseases.


Assuntos
Dracunculíase , Dracunculus , Animais , Cães , Dracunculíase/epidemiologia , Dracunculíase/prevenção & controle , Dracunculíase/veterinária , Pesqueiros , Humanos , Estações do Ano , Zoonoses
3.
Ecol Appl ; 31(5): e02328, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33742486

RESUMO

Variation in the spatial ecology of animals influences the transmission of infections and so understanding host behavior can improve the control of diseases. Despite the global distribution of free-ranging domestic dogs Canis familiaris and their role as reservoirs for zoonotic diseases, little is known about the dynamics of their space use. We deployed GPS loggers on owned but free-ranging dogs from six villages in rural Chad, and tracked the movements of 174 individuals in the dry season and 151 in the wet season. We calculated 95% and core home ranges using auto-correlated kernel density estimates (AKDE95 and AKDEcore ), determined the degree to which their movements were predictable, and identified correlates of movement patterns. The median AKDE95 range in the dry season was 0.54 km2 and in the wet season was 0.31 km2 , while the median AKDEcore range in the dry season was 0.08 km2 and in the wet season was 0.04 km2 . Seasonal variation was, in part, related to owner activities; dogs from hunting households had ranges that were five times larger in the dry season. At least 70% of individuals were more predictably "at home" (<50 m from the household) throughout the day in the dry season, 80% of dogs demonstrated periodicity in activity levels (speed), and just over half the dogs exhibited periodicity in location (repeated space use). In the wet season, dogs mostly exhibited 24-h cycles in activity and location, with peaks at midday. In the dry season, dogs exhibited both 12- and 24-h cycles, with either a single peak at midday, or one peak between 06:00 and 12:00 and a second between 18:00 and 22:00. Strategies to control canine-mediated zoonoses can be improved by tailoring operations to the local spatial ecology of free-ranging dogs. Interventions using a door-to-door strategy in rural Chad would best conduct operations during the dry season, when access to dogs around their household more reliably exceeds 70% throughout the day. Given the importance of use in hunting for explaining variation in dog space-use, targeting approaches to disease control at the household level on the basis of owner activities offers potential to improve access to dogs.


Assuntos
Doenças do Cão , África , Animais , Cães , Ecologia , Comportamento de Retorno ao Território Vital , Zoonoses
4.
Curr Biol ; 31(5): 1107-1111.e5, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33577746

RESUMO

Predation by domestic cats Felis catus can be a threat to biodiversity conservation,1-3 but its mitigation is controversial.4 Confinement and collar-mounted devices can impede cat hunting success and reduce numbers of animals killed,5 but some owners do not wish to inhibit what they see as natural behavior, perceive safety risks associated with collars, or are concerned about device loss and ineffectiveness.6,7 In a controlled and replicated trial, we tested novel, non-invasive interventions that aim to make positive contributions to cat husbandry, alongside existing devices that impede hunting. Households where a high meat protein, grain-free food was provided, and households where 5-10 min of daily object play was introduced, recorded decreases of 36% and 25%, respectively, in numbers of animals captured and brought home by cats, relative to controls and the pre-treatment period. Introduction of puzzle feeders increased numbers by 33%. Fitting Birdsbesafe collar covers reduced the numbers of birds captured and brought home by 42% but had no discernible effect on mammals. Cat bells had no discernible effect. Reductions in predation can be made by non-invasive, positive contributions to cat nutrition and behavior that reduce their tendency to hunt, rather than impede their hunting. These measures are likely to find support among cat owners who are concerned about the welfare implications of other interventions.


Assuntos
Animais Selvagens , Comportamento Predatório , Animais , Gatos , Caça , Carne
5.
Transbound Emerg Dis ; 68(2): 531-542, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32615005

RESUMO

The global programme for the eradication of Guinea worm disease, caused by the parasitic nematode Dracunculus medinensis, has been successful in driving down human cases, but infections in non-human animals, particularly domestic dogs (Canis familiaris), now present a major obstacle to further progress. Dog infections have mainly been found in Chad and, to a lesser extent, in Mali and Ethiopia. While humans classically acquire infection by drinking water containing infected copepods, it has been hypothesized that dogs might additionally or alternatively acquire infection via a novel pathway, such as consumption of fish or frogs as possible transport or paratenic hosts. We characterized the ecology of free-ranging dogs living in three villages in Gog woreda, Gambella region, Ethiopia, in April-May 2018. We analysed their exposure to potential sources of Guinea worm infection and investigated risk factors associated with infection histories. The home ranges of 125 dogs and their activity around water sources were described using GPS tracking, and the diets of 119 dogs were described using stable isotope analysis. Unlike in Chad, where Guinea worm infection is most frequent, we found no ecological or behavioural correlates of infection history in dogs in Ethiopia. Unlike in Chad, there was no effect of variation among dogs in their consumption of aquatic vertebrates (fish or frogs) on their infection history, and we found no evidence to support hypotheses for this novel transmission pathway in Ethiopia. Dog owners had apparently increased the frequency of clean water provision to dogs in response to previous infections. Variations in dog ranging behaviour, owner behaviour and the characteristics of natural water bodies all influenced the exposure of dogs to potential sources of infection. This initial study suggests that the classical transmission pathway should be a focus of attention for Guinea worm control in non-human animals in Ethiopia.


Assuntos
Doenças do Cão/transmissão , Dracunculíase/veterinária , Dracunculus/fisiologia , Animais , Doenças do Cão/parasitologia , Cães , Dracunculíase/parasitologia , Dracunculíase/transmissão , Etiópia , Feminino , Humanos , Masculino
6.
Ecol Evol ; 10(11): 5106-5118, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551086

RESUMO

Monitoring postrelease establishment and movement of animals is important in evaluating conservation translocations. We translocated 39 wild pine martens Martes martes (19 females, 20 males) from Scotland to Wales. We released them into forested areas with no conspecifics in 2015, followed by a second release in 2016, alongside the previously released animals. We used radio-tracking to describe postrelease movement and habitat selection. Six martens (15%) were not re-encountered during the tracking period, of which four undertook long-distance dispersal. For the remaining individuals, we characterized two phases of movement, "exploration" followed by "settlement," that differed between releases. In the first release, martens remained in exploration phase for a mean of 14.5 days (SE = 3.9 days) and settled at a mean distance of 8.7 km (SE = 1.8 km) from release sites, whereas martens released in year two, alongside resident conspecifics, traveled away from release sites at a faster rate, settling sooner, at a mean of 6.6 days (SE = 1.8 days), but further, at a mean distance of 14.0 km (SE = 1.7 km) from release sites. Animals released in year one did not exhibit habitat preferences overall but within forests they favored recently felled areas, whereas animals released in year two showed strong selection for forested habitat but did not discriminate between forest types. The presence of conspecifics appeared influential for settlement and site fidelity of translocated martens and was associated with more rapid but more distant dispersal of the later cohort. Releases of animals in close proximity appeared to promote site fidelity and rapid establishment of ranges in the recipient environment.

7.
PLoS Negl Trop Dis ; 14(4): e0008170, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32310976

RESUMO

Global eradication of human Guinea worm disease (dracunculiasis) has been set back by the emergence of infections in animals, particularly domestic dogs Canis familiaris. The ecology and epidemiology of this reservoir is unknown. We tracked dogs using GPS, inferred diets using stable isotope analysis and analysed correlates of infection in Chad, where numbers of Guinea worm infections are greatest. Dogs had small ranges that varied markedly among villages. Diets consisted largely of human staples and human faeces. A minority of ponds, mostly <200 m from dog-owning households, accounted for most dog exposure to potentially unsafe water. The risk of a dog having had Guinea worm was reduced in dogs living in households providing water for animals but increased with increasing fish consumption by dogs. Provision of safe water might reduce dog exposure to unsafe water, while prioritisation of proactive temephos (Abate) application to the small number of ponds to which dogs have most access is recommended. Fish might have an additional role as transport hosts for Guinea worm, by concentrating copepods infected with worm larvae.


Assuntos
Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Dracunculíase/epidemiologia , Dracunculíase/veterinária , Dracunculus/patogenicidade , Ecologia , Animais , Chade/epidemiologia , Dieta , Reservatórios de Doenças/veterinária , Cães , Características da Família , Fezes/parasitologia , Feminino , Peixes , Humanos , Água
8.
PeerJ ; 6: e4794, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844961

RESUMO

The use of linear mixed effects models (LMMs) is increasingly common in the analysis of biological data. Whilst LMMs offer a flexible approach to modelling a broad range of data types, ecological data are often complex and require complex model structures, and the fitting and interpretation of such models is not always straightforward. The ability to achieve robust biological inference requires that practitioners know how and when to apply these tools. Here, we provide a general overview of current methods for the application of LMMs to biological data, and highlight the typical pitfalls that can be encountered in the statistical modelling process. We tackle several issues regarding methods of model selection, with particular reference to the use of information theory and multi-model inference in ecology. We offer practical solutions and direct the reader to key references that provide further technical detail for those seeking a deeper understanding. This overview should serve as a widely accessible code of best practice for applying LMMs to complex biological problems and model structures, and in doing so improve the robustness of conclusions drawn from studies investigating ecological and evolutionary questions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...